Generalizations of certain well known inequalities for polynomials
نویسندگان
چکیده
منابع مشابه
Some New Generalizations of Zygmund–type Inequalities for Polynomials
In this paper, we consider a problem of investigating the dependence of ∥∥∥P(Rz)−αP(rz)+β {( R+1 r +1 )n −|α | ∥∥∥ p on ‖P(z)‖p for arbitrary real or complex numbers α , β with |α | 1 , |β | 1 , R > r 1 , p > 0 and present certain sharp compact generalizations of some well-known Zygmund-type inequalities for polynomials, from which a variety of interesting results follows as special cases. Math...
متن کاملOn Generalizations of Hadamard Inequalities for Fractional Integrals
Fej'{e}r Hadamard inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r Hadamard inequalities for $k$-fractional integrals. We deduce Fej'{e}r Hadamard-type inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملGeneralizations of orthogonal polynomials
We give a survey of recent generalizations for orthogonal polynomials that were recently obtained. It concerns not only multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, or multipole (orthogonal rational functions) variants of the classical polynomials but also extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications de l'Institut Mathematique
سال: 2020
ISSN: 0350-1302,1820-7405
DOI: 10.2298/pim2021117j